Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Atherosclerosis ; 392: 117526, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38581738

RESUMO

BACKGROUND: Metabolic associated fatty liver disease (MAFLD) is a novel concept proposed in 2020, which is more practical for identifying patients with fatty liver disease with high risk of disease progression. Fatty liver is a driver for extrahepatic complications, particularly cardiovascular diseases (CVD). Although the risk of CVD in MAFLD could be predicted by carotid ultrasound test, a very early stage prediction method before the formation of pathological damage is still lacking. METHODS: Stool microbiomes and plasma metabolites were compared across 196 well-characterized participants encompassing normal controls, simple MAFLD patients, MAFLD patients with carotid artery pathological changes, and MAFLD patients with diagnosed coronary artery disease (CAD). 16S rDNA sequencing data and untargeted metabolomic profiles were interrogatively analyzed using differential abundance analysis and random forest (RF) machine learning algorithm to identify discriminatory gut microbiomes and metabolomic. RESULTS: Characteristic microbial changes in MAFLD patients with CVD risk were represented by the increase of Clostridia and Firmicutes-to-Bacteroidetes ratios. Faecalibacterium was negatively correlated with mean-intima-media thickness (IMT), TC, and TG. Megamonas, Bacteroides, Parabacteroides, and Escherichia were positively correlated with the exacerbation of pathological indexes. MAFLD patients with CVD risk were characterized by the decrease of lithocholic acid taurine conjugate, and the increase of ethylvanillin propylene glycol acetal, both of which had close relationship with Ruminococcus and Gemmiger. Biotin l-sulfoxide had positive correlation with mean-IMT, TG, and weight. The general auxin pesticide beta-naphthoxyacetic acid and the food additive glucosyl steviol were both positively correlated with the increase of mean-IMT. The model combining the metabolite signatures with 9 clinical parameters accurately distinguished MAFLD with CVD risk in the proband and validation cohort. It was found that citral was the most important discriminative metabolite marker, which was validated by both in vitro and in vivo experiments. CONCLUSIONS: Simple MAFLD patients and MAFLD patients with CVD risk had divergent gut microbes and plasma metabolites. The predictive model based on metabolites and 9 clinical parameters could effectively discriminate MAFLD patients with CVD risk at a very early stage.

2.
Microbiol Res ; 284: 127720, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640767

RESUMO

Imbalance in carbon flux distribution is one of the most important factors affecting the further increase in the yield of high value-added natural products in microbial metabolic engineering. Meanwhile, the most common inducible expression systems are difficult to achieve industrial-scale production due to the addition of high-cost or toxic inducers during the fermentation process. Quorum sensing system, as a typical model for density-dependent induction of gene expression, has been widely applied in synthetic biology. However, there are currently few reports for efficient production of microbial natural products by using quorum sensing system to self-regulate carbon flux distribution. Here, we designed an artificial quorum sensing system to achieve efficient production of L-threonine in engineered Escherichia coli by altering the carbon flux distribution of the central metabolic pathways at specific periods. Under the combination of switch module and production module, the system was applied to divide the microbial fermentation process into two stages including growth and production, and improve the production of L-threonine by self-inducing the expression of pyruvate carboxylase and threonine extracellular transporter protease after a sufficient amount of cell growth. The final strain TWF106/pST1011, pST1042pr could produce 118.2 g/L L-threonine with a yield of 0.57 g/g glucose and a productivity of 2.46 g/(L· h). The establishment of this system has important guidance and application value for the production of other high value-added chemicals in microorganisms by self-regulation.

3.
Am J Sports Med ; : 3635465241240140, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619003

RESUMO

BACKGROUND: Rotator cuff tears have been repaired using the transosseous method for decades. The direct suture (DS) technique has been widely used for rotator cuff tears; however, the retear rate is relatively high. Suture anchors are now used frequently for rotator cuff repair (RCR) in accordance with recent developments in materials. However, polyether ether ketone (PEEK) may still cause complications such as the formation of cysts and osteophytes. Some studies have developed the inlay suture (IS) technique for RCR. PURPOSE/HYPOTHESIS: To compare how 3 different surgical techniques-namely, the DS, IS, and PEEK suture anchor (PSA)-affect tendon-bone healing after RCR. We hypothesized that the IS technique would lead to better tendon-to-bone healing and that the repaired structure would be similar to the normal enthesis. STUDY DESIGN: Controlled laboratory study. METHODS: Acute infraspinatus tendon tears were created in 36 six-month-old male rabbits, which were divided into 3 groups based on the technique used for RCR: DS, IS, and PSA. Animals were euthanized at 6 and 12 weeks postoperatively and underwent a histological assessment and imaging. The expression of related proteins was demonstrated by immunohistochemistry and immunofluorescence staining. Mechanical properties were evaluated by biomechanical testing. RESULTS: At 12 weeks, regeneration of the enthesis was observed in the 3 groups. However, the DS group showed a lower type I collagen content than the PSA and IS groups, which was similar to the results for scleraxis. The DS group displayed a significantly inferior type II collagen expression and proteoglycan deposition after safranin O/fast green and sirius red staining. With regard to runt-related transcription factor 2 and alkaline phosphatase, the IS group showed upregulated expression levels compared with the other 2 groups. CONCLUSION: Compared with the DS technique, the PSA and IS techniques contributed to the improved maturation of tendons and fibrocartilage regeneration, while the IS technique particularly promoted osteogenesis at the enthesis. CLINICAL RELEVANCE: The IS and PSA techniques may be more beneficial for tendon-bone healing after RCR.

4.
Biomaterials ; 307: 122529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489911

RESUMO

Muscle tissue engineering is a promising therapeutic strategy for volumetric muscle loss (VML). Among them, decellularized extracellular matrix (dECM) biological scaffolds have shown certain effects in restoring muscle function. However, researchers have inconsistent or even contradictory results on whether dECM biological scaffolds can efficiently regenerate muscle fibers and restore muscle function. This suggests that therapeutic strategies based on dECM biological scaffolds need to be further optimized and developed. In this study, we used a recellularization method of perfusing adipose-derived stem cells (ASCs) and L6 into adipose dECM (adECM) through vascular pedicles. On one hand, this strategy ensures sufficient quantity and uniform distribution of seeded cells inside scaffold. On the other hand, auxiliary L6 cells addresses the issue of low myogenic differentiation efficiency of ASCs. Subsequently, the treatment of VML animal experiments showed that the combined recellularization strategy can improve muscle regeneration and angiogenesis than the single ASCs recellularization strategy, and the TA of former had greater muscle contraction strength. Further single-nucleus RNA sequencing (snRNA-seq) analysis found that L6 cells induced ASCs transform into a new subpopulation of cells highly expressing Mki67, CD34 and CDK1 genes, which had stronger ability of oriented myogenic differentiation. This study demonstrates that co-seeding ASCs and L6 cells through vascular pedicles is a promising recellularization strategy for adECM biological scaffolds, and the engineered muscle tissue constructed based on this has significant therapeutic effects on VML. Overall, this study provides a new paradigm for optimizing and developing dECM-based therapeutic strategies.


Assuntos
Matriz Extracelular Descelularizada , Doenças Musculares , Animais , Matriz Extracelular , Regeneração , Engenharia Tecidual/métodos , Células-Tronco , Obesidade , Músculo Esquelético/fisiologia , Tecidos Suporte
5.
Int J Biol Macromol ; 265(Pt 1): 130919, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492698

RESUMO

Bioceramics are widely used in bone tissue engineering, yet the inherent high brittleness and low ductility of the ceramics lead to poor machinability, which restricts their clinical applications. Here, a flexible and processable 3D printed bioceramic scaffold with high ceramic content (66.7 %) and shape fidelity (volume shrinkage rate < 5 %) was developed by freeze-thaw cycles, which was assisted by polyvinyl alcohol (PVA) and silk fibroin (SF). The hydrogen bonding between PVA imparted printability to the ceramic ink and enabled the subsequent formation of flexible scaffolds, which can be twisted, bend and cut to match bone defects. After adding SF, the printability of the inks and hydrophilicity of the scaffolds were enhanced, owing to the interactions between PVA and SF. Further, combined with the formation of ß-sheet in SF, the scaffolds exhibited superior mechanical strength and excellent thermal stability, and can fully recover at 35 % compressive strain, which was breaking through the brittleness bottleneck of conventional ceramic scaffolds. Moreover, in vitro experiments showed excellent mineralization ability, osteogenic and angiogenic activities of the scaffolds, demonstrating its potential in bone regeneration. This initial study offers a promising personalized material for bone repair that can be used rapidly during surgery.


Assuntos
Fibroínas , Tecidos Suporte , Osso e Ossos , Osteogênese , Engenharia Tecidual , Álcool de Polivinil , Impressão Tridimensional
6.
Viruses ; 16(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399987

RESUMO

Rotaviruses (RVs) are a major cause of diarrhea in young children worldwide. The currently available and licensed vaccines contain live attenuated RVs. Optimization of live attenuated RV vaccines or developing non-replicating RV (e.g., mRNA) vaccines is crucial for reducing the morbidity and mortality from RV infections. Herein, a nucleoside-modified mRNA vaccine encapsulated in lipid nanoparticles (LNP) and encoding the VP7 protein from the G1 type of RV was developed. The 5' untranslated region of an isolated human RV was utilized for the mRNA vaccine. After undergoing quality inspection, the VP7-mRNA vaccine was injected by subcutaneous or intramuscular routes into mice. Mice received three injections in 21 d intervals. IgG antibodies, neutralizing antibodies, cellular immunity, and gene expression from peripheral blood mononuclear cells were evaluated. Significant differences in levels of IgG antibodies were not observed in groups with adjuvant but were observed in groups without adjuvant. The vaccine without adjuvant induced the highest antibody titers after intramuscular injection. The vaccine elicited a potent antiviral immune response characterized by antiviral clusters of differentiation CD8+ T cells. VP7-mRNA induced interferon-γ secretion to mediate cellular immune responses. Chemokine-mediated signaling pathways and immune response were activated by VP7-mRNA vaccine injection. The mRNA LNP vaccine will require testing for protective efficacy, and it is an option for preventing rotavirus infection.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Criança , Animais , Camundongos , Humanos , Pré-Escolar , Rotavirus/genética , Vacinas contra Rotavirus/genética , Vacinas de mRNA , RNA Mensageiro/genética , Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Anticorpos Antivirais , Proteínas do Capsídeo/genética , Adjuvantes Imunológicos , Vacinas Atenuadas , Imunoglobulina G
7.
Microb Cell Fact ; 23(1): 55, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368340

RESUMO

BACKGROUND: Pichia pastoris is a widely utilized host for heterologous protein expression and biotransformation. Despite the numerous strategies developed to optimize the chassis host GS115, the potential impact of changes in cell wall polysaccharides on the fitness and performance of P. pastoris remains largely unexplored. This study aims to investigate how alterations in cell wall polysaccharides affect the fitness and function of P. pastoris, contributing to a better understanding of its overall capabilities. RESULTS: Two novel mutants of GS115 chassis, H001 and H002, were established by inactivating the PAS_chr1-3_0225 and PAS_chr1-3_0661 genes involved in ß-glucan biosynthesis. In comparison to GS115, both modified hosts exhibited a looser cell surface and larger cell size, accompanied by faster growth rates and higher carbon-to-biomass conversion ratios. When utilizing glucose, glycerol, and methanol as exclusive carbon sources, the carbon-to-biomass conversion rates of H001 surpassed GS115 by 10.00%, 9.23%, and 33.33%, respectively. Similarly, H002 exhibited even higher increases of 32.50%, 12.31%, and 53.33% in carbon-to-biomass conversion compared to GS115 under the same carbon sources. Both chassis displayed elevated expression levels of green fluorescent protein (GFP) and human epidermal growth factor (hegf). Compared to GS115/pGAPZ A-gfp, H002/pGAPZ A-gfp showed a 57.64% higher GFP expression, while H002/pPICZα A-hegf produced 66.76% more hegf. Additionally, both mutant hosts exhibited enhanced biosynthesis efficiencies of S-adenosyl-L-methionine and ergothioneine. H001/pGAPZ A-sam2 synthesized 21.28% more SAM at 1.14 g/L compared to GS115/pGAPZ A-sam2, and H001/pGAPZ A-egt1E obtained 45.41% more ERG at 75.85 mg/L. The improved performance of H001 and H002 was likely attributed to increased supplies of NADPH and ATP. Specifically, H001 and H002 exhibited 5.00-fold and 1.55-fold higher ATP levels under glycerol, and 6.64- and 1.47-times higher ATP levels under methanol, respectively, compared to GS115. Comparative lipidomic analysis also indicated that the mutations generated richer unsaturated lipids on cell wall, leading to resilience to oxidative damage. CONCLUSIONS: Two novel P. pastoris chassis hosts with impaired ß-1,3-D-glucan biosynthesis were developed, showcasing enhanced performances in terms of growth rate, protein expression, and catalytic capabilities. These hosts exhibit the potential to serve as attractive alternatives to P. pastoris GS115 for various bioproduction applications.


Assuntos
Metanol , Pichia , Saccharomycetales , Humanos , Pichia/metabolismo , Metanol/metabolismo , Glicerol/metabolismo , Trifosfato de Adenosina/metabolismo , Carbono/metabolismo , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Heliyon ; 10(4): e25658, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370202

RESUMO

Degenerative tendon injuries are common clinical problems associated with overuse or aging, and understanding the mechanisms of tendon injury and regeneration can contribute to the study of tendon healing and repair. As a transcription factor, Mohawk (Mkx) is responsible for tendons development, yet, the roles of which in tendon damage remain mostly elusive. In this study, using Mkx overexpressed mice on long treadmill as an in vivo model and MkxOE Achilles tenocytes stimulated by equiaxial stretch as an in vitro model, we anaylsed the effects of Mkx overexpression on the tendon. Mkx and tendon tension strength were decreased after the expose to excessive mechanical forces, and Mkx overexpression protected the tendon from damage. Moreover, we revealed that the Wnt/ß-catenin activation, inflammation, and Runx2 expression were increased at the injured Achilles tendon, upregulated Mkx significantly reversed the increased Wnt/ß-catenin pathway, Tnf-α, Il-1ß, and Il-6 levels, and reduced tendon cell damage. However, Wnt3a, IWR and BIO had not significantly affected the Mkx expression in achilles tenocytes. In conclusion, Mkx is involved in tendon healing and protects the tendon from damage through suppressing Wnt/ß-catenin pathway, suggesting Mkx/Wnt/ß-catenin pathway may be potential therapeutic targets for tendon damage.

10.
Plant Cell ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262703

RESUMO

In cereal grains, starch is synthesized by the concerted actions of multiple enzymes on the surface of starch granules within the amyloplast. However, little is known about how starch-synthesizing enzymes access starch granules, especially for amylopectin biosynthesis. Here, we show that the rice (Oryza sativa) floury endosperm9 (flo9) mutant is defective in amylopectin biosynthesis, leading to grains exhibiting a floury endosperm with a hollow core. Molecular cloning revealed that FLO9 encodes a plant-specific protein homologous to Arabidopsis (Arabidopsis thaliana) LIKE EARLY STARVATION1 (LESV). Unlike Arabidopsis LESV, which is involved in starch metabolism in leaves, OsLESV is required for starch granule initiation in the endosperm. OsLESV can directly bind to starch by its C-terminal tryptophan (Trp)-rich region. Cellular and biochemical evidence suggests that OsLESV interacts with the starch-binding protein FLO6, and loss-of-function mutations of either gene impair ISOAMYLASE 1 (ISA1) targeting to starch granules. Genetically, OsLESV acts synergistically with FLO6 to regulate starch biosynthesis and endosperm development. Together, our results identify OsLESV-FLO6 as a non-enzymatic molecular module responsible for ISA1 localization on starch granules, and present a target gene for use in biotechnology to control starch content and composition in rice endosperm.

11.
Cancer Cell Int ; 24(1): 38, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238825

RESUMO

Drug resistance remains a challenge in ovarian cancer. In addition to aberrant activation of relevant signaling pathways, the adaptive stress response is emerging as a new spotlight of drug resistance in cancer cells. Stress granules (SGs) are one of the most important features of the adaptive stress response, and there is increasing evidence that SGs promote drug resistance in cancer cells. In the present study, we compared two types of ovarian cancer cells, A2780 and SKOV3, using the dual PI3K/mTOR inhibitor, PKI-402. We found that SGs were formed and SGs could intercept the signaling factor ATF5 and regulate the mitochondrial unfolded protein response (UPRmt) in A2780 cells. Therefore, exploring the network formed between SGs and membrane-bound organelles, such as mitochondria, which may provide a new insight into the mechanisms of antitumor drug functions.

13.
Foodborne Pathog Dis ; 21(3): 174-182, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112720

RESUMO

Cronobacter sakazakii, an opportunistic milk-borne pathogen responsible for severe neonatal meningitis and bacteremia, can synthesize yellow pigment (various carotenoids) benefiting for bacterial survival, while little literature was available about the influence of various carotenoids on bacterial resistance to a series of stresses and the characteristics of cell membrane, obstructing the development of novel bactericidal strategies overcoming the strong tolerance of C. sakazakii. Thus in this study, for the first time, five carotenogenic genes of C. sakazakii BAA-894 were inactivated, respectively, to construct a series of mutants producing various carotenoids and their effects on the cell membrane properties, and resistances to food- and host-related stresses, were investigated systematically. Furthermore, to explore its possible mode of action, comparative lipidomics analysis was performed to reveal the change of lipids that were mainly located at cell membranes. The results showed that five mutants (ΔcrtB, ΔcrtI, ΔcrtY, ΔcrtZ, and ΔcrtX) displayed negligible change in growth rate but higher permeability of the outer membrane and lower fluidity of cell membrane compared to the wild type. Besides, these mutants exhibited poorer ability of biofilm formation and lower resistances to acid, oxidative, osmotic, and desiccation stresses, indicating that different carotenoid composition significantly affected environmental tolerance of C. sakazakii. To discover the possible causes, lipidomics analysis of C. sakazakii was conducted and more than 500 lipid species belonging to 27 classes had been identified at first. Compared to that of BAA-894, the composition and relative intensity of lipid species in five mutants varied significantly, especially the monounsaturated and biunsaturated phosphatidylethanolamine. The evidence presented in this study demonstrated that the varied composition of carotenoids in C. sakazakii significantly altered the lipid profile and intensity, which maybe a crucial means to influencing the characteristics of cell membranes and resistance to environmental stresses.


Assuntos
Cronobacter sakazakii , Cronobacter , Recém-Nascido , Humanos , Cronobacter sakazakii/genética , Carotenoides/metabolismo , Estresse Fisiológico , Lipídeos
14.
ACS Appl Mater Interfaces ; 16(1): 292-304, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38133932

RESUMO

Rotator cuff tear (RCT) is a prevalent shoulder injury that poses challenges for achieving continuous and functional regeneration of the tendon-to-bone interface (TBI). In this study, we controlled the delivery of growth factors (GFs) from liposomal nanohybrid cerasomes by ultrasound and implanted three-dimensional printed polycaprolactone (PCL) scaffolds modified with polydopamine loaded with bone marrow mesenchymal stem cells (BMSCs) to repair tears of the infraspinatus tendon in a lapine model. Direct suturing (control, CTL) was used as a control. The PCL/BMSC/cerasome (PBC) devices are sutured with the enthesis of the infraspinatus tendon. The cerasomes and PCL scaffolds are highly stable with excellent biocompatibility. The roles of GFs BMP2, TGFß1, and FGF2 in tissue-specific differentiation are validated. Compared with the CTL group, the PBC group had significantly greater proteoglycan deposition (P = 0.0218), collagen volume fraction (P = 0.0078), and proportions of collagen I (P = 0.0085) and collagen III (P = 0.0048). Biotin-labeled in situ hybridization revealed a high rate of survival for transplanted BMSCs. Collagen type co-staining at the TBI is consistent with multiple collagen regeneration. Our studies demonstrate the validity of biomimetic scaffolds of TBI with BMSC-seeded PCL scaffolds and GF-loaded cerasomes to enhance the treatment outcomes for RCTs.


Assuntos
Células-Tronco Mesenquimais , Poliésteres , Tecidos Suporte , Biomimética , Tendões , Colágeno/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células da Medula Óssea
15.
Bull Environ Contam Toxicol ; 112(1): 5, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063888

RESUMO

Recent studies have shown that the microplastics in waste activated sludge (WAS) can directly reduce the microbial activity and influence the performance of anaerobic digestion. Unfortunately, few studies paid attention on the interactions between WAS and MPs, since MPs could impact the contact between sludge flocs and microorganisms. We found that PVC-MP changed the interfacial energy properties of the WAS surface and affected methane production. Low concentration (40 mg/L) of PVC-MP changed the water affinity and greatly reduced the energy barrier of interfacial reaction. Simultaneously, WAS surface charge characteristics changed with increasing MPs concentration, which made the sludge difficult to contact with microorganisms. The change process of WAS surface functional groups also indicated that PVC-MP first cover the sludge surface to prevent from being utilized by microorganisms, and then affect the surface protein structure before toxic substances leaching. Our study provides new insights into how MPs affect anaerobic digestion.


Assuntos
Microplásticos , Esgotos , Esgotos/química , Microplásticos/metabolismo , Plásticos , Cloreto de Polivinila , Anaerobiose , Eliminação de Resíduos Líquidos , Reatores Biológicos , Metano
16.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38038201

RESUMO

Pathways of two-body fragmentation of BrCNq+ (q = 2, 3) have been explored by combined experimental and theoretical studies. In the experiment, the BrCN molecule is ionized by 1 keV electron impact and the created fragment ions are detected using an ion momentum imaging spectrometer. Six two-body fragmentation channels are identified. By measuring the momentum vectors of the fragment ions, the kinetic energy release (KER) distributions for these channels have been determined. Theoretically, the potential energy curves of BrCNq+ (q = 2, 3) as a function of Br-C and C-N internuclear distances are calculated by the complete active space self-consistent field method. By comparing the measured KER and theoretical predictions, pathways for the fragmentation channels are assigned. The relative branching ratios of the channels are also determined.

17.
Bioengineering (Basel) ; 10(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136013

RESUMO

In the present study, 24 rabbits were firstly used to evaluate the apoptosis index and matrix degeneration after untreated adult meniscal tears. Vertical tears (0.25 cm in length) were prepared in the avascular zone of the anterior horn. Specimens were harvested at 1, 3, 6, 12 weeks postoperatively. The apoptosis index around tear sites stayed at a high level throughout the whole follow-up period. The depletion of glycosaminoglycans (GAG) and aggrecan at the tear site was observed, while the deposition of COL I and COL II was not affected, even at the last follow-up of 12 weeks after operation. The expression of SOX9 decreased significantly; no cellularity was observed at the wound interface at all timepoints. Secondly, another 20 rabbits were included to evaluate the effects of anti-apoptosis therapy on rescuing meniscal cells and enhancing meniscus repair. Longitudinal vertical tears (0.5 cm in length) were made in the meniscal avascular body. Tears were repaired by the inside-out suture technique, or repaired with sutures in addition to fibrin gel and blank silica nanoparticles, or silica nanoparticles encapsulating apoptosis inhibitors (z-vad-fmk). Samples were harvested at 12 months postoperatively. We found the locally administered z-vad-fmk agent at the wound interface significantly alleviated meniscal cell apoptosis and matrix degradation, and enhanced meniscal repair in the avascular zone at 12 months after operation. Thus, local administration of caspase inhibitors (z-vad-fmk) is a promising therapeutic strategy for alleviating meniscal cell loss and enhancing meniscal repair after adult meniscal tears in the avascular zone.

18.
Mil Med Res ; 10(1): 67, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115158

RESUMO

Electroencephalography (EEG) is a non-invasive measurement method for brain activity. Due to its safety, high resolution, and hypersensitivity to dynamic changes in brain neural signals, EEG has aroused much interest in scientific research and medical fields. This article reviews the types of EEG signals, multiple EEG signal analysis methods, and the application of relevant methods in the neuroscience field and for diagnosing neurological diseases. First, three types of EEG signals, including time-invariant EEG, accurate event-related EEG, and random event-related EEG, are introduced. Second, five main directions for the methods of EEG analysis, including power spectrum analysis, time-frequency analysis, connectivity analysis, source localization methods, and machine learning methods, are described in the main section, along with different sub-methods and effect evaluations for solving the same problem. Finally, the application scenarios of different EEG analysis methods are emphasized, and the advantages and disadvantages of similar methods are distinguished. This article is expected to assist researchers in selecting suitable EEG analysis methods based on their research objectives, provide references for subsequent research, and summarize current issues and prospects for the future.


Assuntos
Eletroencefalografia , Neurologia , Humanos , Eletroencefalografia/métodos , Encéfalo
19.
PLoS Biol ; 21(11): e3002399, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983253

RESUMO

Understanding how individual memories are reactivated during sleep is essential in theorizing memory consolidation. Here, we employed the targeted memory reactivation (TMR) paradigm to unobtrusively replaying auditory memory cues during human participants' slow-wave sleep (SWS). Using representational similarity analysis (RSA) on cue-elicited electroencephalogram (EEG), we found temporally segregated and functionally distinct item-specific neural representations: the early post-cue EEG activity (within 0 to 2,000 ms) contained comparable item-specific representations for memory cues and control cues, signifying effective processing of auditory cues. Critically, the later EEG activity (2,500 to 2,960 ms) showed greater item-specific representations for post-sleep remembered items than for forgotten and control cues, indicating memory reprocessing. Moreover, these later item-specific neural representations were supported by concurrently increased spindles, particularly for items that had not been tested prior to sleep. These findings elucidated how external memory cues triggered item-specific neural representations during SWS and how such representations were linked to successful long-term memory. These results will benefit future research aiming to perturb specific memory episodes during sleep.


Assuntos
Consolidação da Memória , Memória , Humanos , Memória/fisiologia , Sono/fisiologia , Memória de Longo Prazo , Sinais (Psicologia) , Rememoração Mental/fisiologia , Consolidação da Memória/fisiologia
20.
Sci Adv ; 9(45): eadg8138, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939174

RESUMO

Meniscus is a complex and crucial fibrocartilaginous tissue within the knee joint. Meniscal regeneration remains to be a scientific and translational challenge. We clarified that mesenchymal stem cells (MSCs) participated in meniscal maturation and regeneration using MSC-tracing transgenic mice model. Here, inspired by meniscal natural maturational and regenerative process, we developed an effective and translational strategy to facilitate meniscal regeneration by three-dimensionally printing biomimetic meniscal scaffold combining autologous synovium transplant, which contained abundant intrinsic MSCs. We verified that this facilitated anisotropic meniscus-like tissue regeneration and protected cartilage from degeneration in large animal model. Mechanistically, the biomechanics and matrix stiffness up-regulated Piezo1 expression, facilitating concerted activation of calcineurin and NFATc1, further activated YAP-pSmad2/3-SOX9 axis, and consequently facilitated fibrochondrogenesis of MSCs during meniscal regeneration. In addition, Piezo1 induced by biomechanics and matrix stiffness up-regulated collagen cross-link enzyme expression, which catalyzed collagen cross-link and thereby enhanced mechanical properties of regenerated tissue.


Assuntos
Menisco , Células-Tronco Mesenquimais , Animais , Camundongos , Menisco/metabolismo , Fibrocartilagem/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colágeno/metabolismo , Modelos Animais , Camundongos Transgênicos , Canais Iônicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...